В последние годы облик военных действий серьезно изменился. На смену крупномасштабным операциям с участием всех родов войск пришли боевые действия в городских условиях и/или против врага, предпочитающего засадную тактику. Все это сильно влияет на текущий облик вооруженных сил ведущих государств мира, а также требует своевременно пересматривать взгляды на те или иные вопросы тактики и стратегии. В одно из самых сложных положений в современных условиях попала артиллерия. «Бог войны», ввиду объективных причин, недостаточно приспособлен для ведения современной войны. Наибольшую боевую эффективность артиллерийские системы демонстрируют при атаке площадных целей в условиях общевойскового боя. Однако в современных противопартизанских операциях некоторые особенности артиллерии не позволяют использовать ее с ожидаемым результатом.
В настоящее время к традиционным путям развития артиллерии – дальность стрельбы, могущество снарядов и т.д. – добавилось еще одно немаловажное направление. В условиях современной войны особое значение приобретает точно стрельбы. Ранее артиллерия применялась для работы по площадям, но в сегодняшних условиях она обязана иметь возможность точного поражения выбранной цели без промаха и уничтожения других объектов. Тем не менее, и другие параметры артиллерийской системы помимо точности продолжают оставаться объектом внимания ученых и конструкторов.
Дальше
Рассмотрим способы повышения дальности полета снаряда. На протяжении многих лет стрельба на большие расстояния была задачей гаубиц – орудий со стволом длинной в 15-30 калибров, предназначенных для ведения огня по навесной траектории. В последние несколько десятилетий наметилась другая тенденция. В соответствии с уравнением баллистического движения конструкторы орудий стали предпринимать попытки увеличить дальность стрельбы при помощи увеличения начальной скорости снаряда и удлинения ствола. Так, к примеру, советская/российская самоходная артиллерийская установка «Мста-С» оснащается орудием 2А64 со стволом длиной в 47 калибров, что значительно превышает классические «гаубичные» пропорции и больше напоминает облик танковых пушек. Большая длина ствола позволяет повысить начальную скорость снаряда, а также с большей эффективностью использовать энергию пороховых газов метательного заряда. В результате таких мер уже упомянутая САУ «Мста-С» при оптимальном угле возвышения ствола может обстреливать цели на дальности в 15-20 километров, в зависимости от используемого снаряда.
В то же время, дальность стрельбы зависит не только от длины ствола. Фактически параметры ствола влияют на дальность лишь косвенно, поскольку только помогают метательному заряду разгонять снаряд в течение немного большего времени. В последние годы появилось немало новых сортов артиллерийского пороха, используемых в современных метательных зарядах. При создании новых гильз с зарядом в ведущих странах были применены некоторые новые оригинальные решения. К примеру, существуют пороха с включениями взрывчатых веществ или с особой формой зерна пороха. Такие меры помогают значительно повысить быстроту сгорания пороха и, как следствие, выделение энергии. Помимо использования привычных порохов, хотя и сделанных по новым технологиям, в настоящее время исследуются и другие варианты метательного заряда. За рубежом ведутся исследования на предмет использования в них жидких горючих веществ или даже порошка некоторых металлов. В теории такие методики могут значительно повысить энергию, передаваемую снаряду, однако пока строевым артиллеристам приходится обходиться традиционными смесями на основе пороха.
Примечательно, что в гонке за увеличением дальности стрельбы «участвуют» не только стволы и метательные заряды. Уже достаточно давно существует два способа увеличить этот параметр при помощи модернизации снаряда. Для наиболее эффективного разгона в канале ствола снаряд должен иметь ровную или близкую к ней поверхность донной части. Однако в полете за такой «обрубленной» задней частью снаряда образуются вихри, тормозящие его. Во избежание образования этих вихрей были созданы снаряды с газогенераторами. Специальная пиротехническая шашка, находящаяся в донной части снаряда, сгорает и через сопла выбрасывает газы. Те, в свою очередь, заполняют пространство за снарядом и мешают образованию лишних завихрений, а также в некоторой мере разгоняют снаряд. В результате применения газогенератора дальность полета снаряда увеличивается на значительную величину. Для примера снова возьмем САУ «Мста-С». Снаряд ЗВОФ91, оснащенный донным газогенератором, имеет такие же весовые параметры и характеристики метательного заряда, как и обычный осколочно-фугасный снаряд ЗВОФ72. При этом снаряд с газогенератором может лететь на дальность около 29 километров, что почти на 20% больше аналогичного параметра снаряда ЗВОФ72.
Эффективной, но более сложной альтернативой снаряду с газогенератором является активно-реактивный снаряд. Он выбрасывается из ствола орудия при помощи порохового заряда, а после включает собственный твердотопливный двигатель. Благодаря такой системе удается значительно повысить дальность стрельбы. Рекордсменом по этому параметру в настоящее время считается снаряд Denel V-LAP. В 2006 году во время испытаний этого снаряда самоходная артиллерийская установка немецкого производства PzH 2000 отправила его на 56 километров. Заявленная производителем максимальная дальность стрельбы этим снарядом еще больше – 60 км. Для сравнения, дальность стрельбы САУ PzH 2000 обычным снарядом той же массы с таким же метательным зарядом не превышает 28-30 километров. Примечательно, что предпосылкой к рекорду снаряда V-LAP было не только наличие заряда ракетного топлива, но и его усовершенствованная аэродинамика.
Сейчас предпринимаются самые разные попытки дополнительно увеличить дальность полета артиллерийских снарядов. Наиболее перспективным в настоящее время является создание новых активно-реактивных снарядов с увеличенной тягой твердотопливного двигателя. В то же время, бесконечное увеличение дальности только за счет нового состава топлива невозможно, поскольку его количество ограниченно габаритами снаряда. По этой причине появляются достаточно интересные предложения, например, оснащать артиллерийские снаряды раскладными крыльями, с помощью которых он сможет планировать на большее расстояние.
Точнее
Очевидно, что простое увеличение дальности полета снаряда не повлечет за собой какой-либо положительный эффект. При полете на большие расстояния неуправляемые боеприпасы будут слишком сильно отклоняться от расчетной траектории и для надежного поражения цели сравнительно малых размеров потребуется слишком большой расход боеприпасов. Помимо экономической неэффективности подобный подход также может быть неприемлем из-за возможных последствий в виде поражения гражданских или союзнических объектов. Обеспечение экономической и боевой эффективности артиллерийского обстрела, тем более в сложных условиях, возможно только при помощи корректируемых боеприпасов.
Первым управляемым артиллерийским снарядом, дошедшим до серийного производства и практического применения, стал американский M712 Copperhead. Этот 155-миллиметровый боеприпас имел дальность полета до 16 километров, а на конечном участке траектории наводился на цель при помощи полуактивной лазерной системы самонаведения. Имея вес около 62 килограмм, «Копперхед» нес менее 7 кг взрывчатого вещества, однако при помощи системы наведения этот недостаток компенсировался. В восьмидесятых годах снаряд M712 был модернизирован, после чего получил возможность наводиться не только по отраженному свету лазера, но и по инфракрасному излучению цели. Согласно различным данным, эффективность управляемого снаряда Copperhead в сравнении с неуправляемыми боеприпасами выше в несколько десятков раз.
На появление корректируемых снарядов M712 Советский Союз ответил разработкой комплекса 2К24 «Сантиметр», предназначенного для использования со 152-мм артиллерийскими системами. Принцип наведения снарядов этого комплекса аналогичен алгоритму американского «Копперхеда»: корректировщик подсвечивает цель при помощи лазера и снаряд наводится по отраженному от цели свету. Максимальная дальность стрельбы снарядами «Сантиметр» равнялась 18 километрам. Дальнейшим развитием идеологии этого комплекса стали снаряды «Краснополь» и «Китолов». Они точно так же используют полуактивное лазерное наведение, однако отличаются по своим характеристикам. Так, 45-килограмовый «Краснополь» калибра 152 миллиметра может лететь на дальность до 25 километров. Утверждается, что при использовании управляемых снарядов этого типа для уничтожения определенной цели возможно достижение экономии боеприпасов в 95-98% по сравнению с расходом неуправляемых «болванок». Снаряд «Китолов» имеет меньший калибр (122 мм или 120 мм в экспортной версии) и, как следствие, меньшую дальность стрельбы в 12 километров. На базе «Китолова» был создан корректируемый боеприпас для 120-миллиметровых минометов.
2К24 «Сантиметр»
Характерной чертой всех описанных выше управляемых снарядов является наведение на отраженный свет лазера. Из-за этого для успешной атаки дополнительно требуется несколько человек, которые будут подсвечивать цель лазером. Причем, в отличие от пушки или самоходной артустановки, им придется находиться на сравнительно небольшом расстоянии от самой цели – максимум, в пяти-семи километрах. Этот факт повышает риск потери личного состава и поэтому в западных странах подобная концепция управляемого снаряда была признана неэффективной и бесперспективной.
В качестве способа решения сложившейся проблемы в США был разработан снаряд M982 Excalibur. Этот снаряд не нуждается в подсветке цели, поскольку имеет комбинированную инерциально-спутниковую систему наведения. Перед стрельбой артиллерийский расчет получает от разведки координаты цели и вводит их в электронную «начинку» снаряда. Далее 155-миллиметровый снаряд выстреливается и, корректируя свою траекторию в соответствии с данными инерциальной навигационной системы и спутниками GPS, поражает цель, либо падает в близости от нее. Заявленная дальность стрельбы до 60 километров обеспечивается при помощи использования дополнительного твердотопливного двигателя. Кроме того, высокая дальность обеспечивается при помощи складного крыла, на котором снаряд планирует из верхней точки траектории. Заявленное круговое вероятное отклонение (КВО) снаряда M982 не превышает 10-12 метров. Снаряд M982 позволяет не подвергать смертельному риску разведчиков и корректировщиков, поскольку координаты цели могут быть получены любыми доступными средствами, в том числе и при помощи беспилотной техники. При этом Excalibur подвергается критике из-за того, что наведение по координатам не обеспечивает гарантированное уничтожение движущейся цели. Пока данные о координатах цели дойдут до артиллеристов и пока они произведут подготовку снаряда и выстрел, техника противника может успеть уйти из заданного района.
M982 Excalibur
По подсчетам американских экономистов, даже при массовом производстве снаряд «Экскалибур» не может стоить меньше 50-55 тысяч долларов. Это можно признать приемлемой ценой в сравнении с большим расходом неуправляемых боеприпасов, однако сама по себе стоимость снаряда M982 выглядит достаточно большой. В качестве альтернативы дорогим корректируемым снарядам наподобие «Копперхеда», «Краснополя» или «Экскалибура» предлагается специальный модуль для обычных неуправляемых снарядов. В 2010 году израильская компания IAI представила модуль TopGun, представляющий собой агрегат, устанавливаемый на место штатного взрывателя. Модуль для 155-мм снарядов обеспечивает наведение боеприпаса по сигналам спутниковой навигационной системы и, как утверждается, дает КВО не более 20 метров на дальности порядка 40 километров. Поскольку система TopGun представляет собой дополнительный модуль, она может быть установлена на любой снаряд стандарта НАТО, вне зависимости от типа, наличия газогенератора или дополнительного двигателя.
Мощнее
Фактически все меры по повышению дальности стрельбы и точности наведения снаряда являются способом доставки к цели заряда взрывчатого вещества. Наиболее популярными видами последнего на протяжении последних десятилетий остаются тринитротолуол, «композиция B» и другие широко известные вещества и смеси. В последнее время появились предложения сокращать заряд взрывчатого вещества для выполнения специальных задач. Под специальными задачами в этом контексте понимается поражение малоразмерных целей, окруженных другими объектами, которые нельзя повредить. В таком случае возможно использование только маломощных или вообще неснаряженных взрывчаткой боеприпасов. Одновременно с этим продолжается разработка новых взрывчатых веществ, обладающих более высоким фугасным и бризантным действием. Однако их массовое использование пока нецелесообразно ввиду высокой стоимости.
Что касается снарядов прочего назначения, то сейчас продолжаются работы над дымовыми боеприпасами, аэрозоли которых экранируют инфракрасное и лазерное излучение и т.п. Также в последние годы было создано несколько пока экспериментальных осветительных снарядов, осуществляющих подсветку в инфракрасном диапазоне. Такие боеприпасы способны в ночных условиях содействовать подразделениям, оснащенным тепловизионной аппаратурой и при этом не помогать противнику, не имеющему подобного оборудования. Наконец, стоит отметить разработки в области DIME-снарядов. Эти перспективные боеприпасы основываются на технологии DIME (Dense Inert Metal Explosive – «Плотное инертное металлическое взрывчатое вещество»), подразумевающей наполнение снаряда микрочастицами специального сплава. Во время детонации такой снаряд разбрасывает вокруг себя большое количество мелких «песчинок» тугоплавкого металла, которые действуют подобно осколкам. При этом радиус поражения такими «осколками» равняется всего нескольким метрам, после чего они теряют всю свою энергию или сгорают. DIME-снаряды в будущем могут составить конкуренцию боеприпасам традиционной компоновки, но с небольшим зарядом взрывчатого вещества.
***
Несомненно, вне зависимости от дальнейшего изменения облика современной войны, артиллерия останется в составе всех вооруженных сил. Однако она будет вынуждена отвечать на современные угрозы, получая новые орудия и боеприпасы. Как видим, у ведущих стран уже есть наработки, позволяющие значительно повысить боевой потенциал даже старых орудий, а также обеспечить им возможность выполнения самых сложных задач. При этом основная масса будущих нововведений в артиллерии, скорее всего, будет касаться именно боеприпасов. Системы управления огнем и «железо» останутся важными, но их приоритет немного снизится.
http://topwar.ru/
Артиллерийские боеприпасы следующего поколения
Традиционно артиллерия является самым важным компонентом огневой поддержки в общевойсковых операциях. Артиллерия выполняет классические задачи рассеивания вражеских сил, сдерживания противника или прикрытия собственных войск при необходимости, осуществляет поддержку боевых подразделений на поле боя ночью за счет подсвечивания заданного района.
Способность артиллерии выполнять эти задачи должна обеспечиваться и в будущем. Следовательно, производство традиционного крупнокалиберного боеприпаса для ствольного вооружения будет продолжено, одновременно продолжится дальнейшая разработка артиллерийских боеприпасов с целью повышения их дальнобойности и усиления воздействия на цели.
Война в Ираке, например, поставила вопрос, будет ли артиллерия развертываться в изменившихся и новых сценариях, так как во многих случаях традиционное поле боя уступило дорогу асимметричным/городским боевым действиям. Вооруженные силы часто остаются без прикрытия, когда противник действует с подготовленных позиций на ближних дистанциях. Войска часто не могут выдвинуться без превосходящей огневой мощи, обеспечиваемой действенной артиллерийской составляющей. К тому же, часто в боевых районах присутствуют гражданские и члены гуманитарных организаций. Следовательно, традиционные артиллерийские боеприпасы как правило слишком не точны для использования в миротворческих операциях; существует большой риск косвенных потерь, который может быть минимизирован за счет новых, специально разработанных, более точных боеприпасов.
Нейтрализация выбранных одиночных целей с высокой вероятностью поражения цели с первого выстрела первоначально не была частью оперативной функции ствольной артиллерии. Так как она являлась традиционным вооружением ведения огня по площадям, точность артиллерийского снаряда скорее была второстепенным критерием. Снаряды должны поражать примерный центр района цели с определенным допустимым отклонением. Однако, круговая вероятная ошибка (КВО) с увеличением дистанции также растет в арифметической прогрессии. Таким образом, с увеличением дистанции до цели рассеивание увеличивается как в длину, так и в ширину. Для того, чтобы компенсировать этот эффект, необходимо больше боеприпасов для эффективного поражения цели. Поскольку все это необходимо рассматривать с критической точки зрения, то решения по повышению точности должны исследоваться и воплощаться не только с позиции перспективы логистической (материально-технического обеспечения), но также в свете вышеупомянутых изменившихся требований.
Повышенная точность вновь разработанных снарядов позволяет солдату поражать цель меньшим их числом. Принимая во внимание меньший расход боеприпасов (как следствие повышенной точности), угрозы для не участвующих в боевых действиях гражданских снижены. Проведение работ по стандартизации боеприпаса также обеспечивает улучшение логистических методик.
Впрочем, современный артиллерийский боеприпас должен эффективно поражать цель. В этой связи ожидается применение проверенных, а также новых принципов воздействия на цели. Кроме того, на разработку артиллерийских боеприпасов окажут влияние международные соглашения, например конвенция о запрещении кассетных боеприпасов, вступившая в действие в августе 2010 года.
В конечном счете, соображения безопасности хранения и транспортировки артиллерийских боеприпасов также должны быть приняты во внимание.
|
Увеличение дальнобойности
Дальнобойность всегда была показателем качества артиллерийских систем и до сих пор играет важную роль при оценке и сравнении систем. Следовательно, в настоящее время изучаются различные возможности по увеличению дальнобойности. С технической точки зрения, на дальнобойность системы влияют тип вооружения, метательный заряд и баллистические характеристики соответствующего снаряда.
На сегодняшний день было улучшено качество стволов артиллерийских орудий, что позволяет использовать метательные заряды с большей энергией и таким образом создающих большее давление. Современные артиллерийские заряды больше не имеют ничего общего с первоначально используемым порохом. Вследствие внедрения взрывчатых веществ и улучшения геометрических параметров сгорания, современные метательные заряды являются значительно более взрывными и энергетически более эффективными.
Кроме того, увеличилась длина артиллерийских стволов; устаревшие гаубицы имеют длину ствола примерно до 39 — 42 калибров, тогда как современные стволы имеют длину до 52 калибров. Так как современные стволы более длинные, энергия метательного заряда может использоваться более эффективно. Применяемые в настоящее время твердые заряды имеют небольшое пространство для повышения характеристик. Поэтому, НИОКР также сосредотачиваются на жидких и газообразных метательных веществах, которые впрыскиваются в камору сгорания пушки, аналогично тому, как делается это с топливом в двигателе внутреннего сгорания, по мере движения снаряда в стволе. Другие производители оценивают возможность создания пушек, в которых снаряд приводится в движение электромагнитными импульсами.
Технические изменения артиллерийских снарядов также обеспечили увеличение дальности. Баллистические характеристики снаряда зависят от его формы. Таким образом, первоначальное пушечное ядро развилось в снаряд цилидрическо-оживальной формы. В сравнении с современными моделями снарядов прежние модели кажутся округлыми и тупоносыми, более новые модели имеют более удлиненную, заостренную форму. Например, стержневидная или торпедообразная форма новых снарядов может способствовать снижению аэродинамического сопротивления, что тем самым повышает дальность.
Дополнительные изменения можно найти и в задней части снаряда. Цилиндрическая часть устаревших снарядов часто заканчивалась «обрубком» (притупленной формы), увеличивая турбулентность и донное сопротивление, что тормозило снаряд в полете. Поэтому были разработаны так называемые снаряды с донным газогенератором с целью уменьшения воздействия донного сопротивления.
Рабочие газы пиротехнической системы в задней части истекают внутрь и тем самым компенсируют область отрицательного давления непосредственно за снарядом.
Вдобавок к донному газогенератору, были разработаны снаряды с ракетным двигателем. Метательные заряды были встроены в заднюю часть боеголовки, благодаря чему снаряд получил дополнительное ускорение во время своего полета по траектории.
Вышеизложенные технические усовершенствования обеспечили значительное повышение дальности стрельбы традиционного артиллерийского вооружения (например, с изначальных 20 км до 52 км в случае со 155-мм самоходной гаубицей). Впрочем, фактическое повышение дальности вследствие применения донного газогенератора и вспомогательных реактивных двигателей должно изучаться очень серьезно, так как это негативно повлияло на максимальную массу боевой части снаряда. В этой связи, и в особенности у более новых типов боеприпасов, детали корпусов снарядов, которые первоначально изготавливались из стали, теперь производятся из более легких материалов, например пластмасс, армированных стекловолокном. Нынешние максимальные дальности составляют более 52 км. Этих дальностей можно достичь при использовании так называемого артиллерийского реактивного дальнобойного снаряда с увеличенной начальной скоростью V-LAP (Velocity-enhanced Long-range Artillery Projectiles). Эти снаряды имеют сниженное сопротивление трению во время движения в стволе, так как они скользят по нарезам и соответствующим поверхностям за счет центрирующего пояска и направляющих, закрепленных на снаряде, к тому же они оснащены донными газогенераторами и вспомогательными ракетными двигателями.
Увеличение дальности может быть достигнуто также за счет так называемого кабрирования снаряда во время его полета. Для этого центр тяжести снаряда скорректирован так, что нос находится пропорционально «выше» задней части. Следовательно, снаряд как бы планирует в воздухе, который «подпирает» его снизу.
Точность
Характеристики дальнобойности всегда были основанием для размышления о том, как поразить выбранные точечные цели средствами артиллерии. Традиционно артиллерийские снаряды стабилизируются вращением. Этого было достаточно для гарантирования требуемой точности для традиционных задач артиллерийских войск, однако не достаточно для поражения точечных целей. Одним из решений по повышению точности является применение снарядов с лазерным наведением. Еще одним направлением является использование спутниковой навигации.
|
В декабре 2008 года французское агентство по оборонным закупкам опубликовало программу начальных исследований для временной группы компаний, состоящей из Nexter Munitions и TDA (подразделение компании Thales) на проектирование и производство опытного образца высокоточного артиллерийского снаряда. Целью этой программы является закупка недорогих технологических модулей для навигации, пилотирования, наведения, захвата и обнаружения целей (полуактивный лазерный сенсор), которые могут быть интегрированы в несколько типов боеприпасов (120-мм минометный, танковый, 155-мм артиллерийский, ракеты GMLRS (РСЗО) и 68-мм вертолетные ракеты).
Сегодня бункеры, пещеры в отдаленных горных районах, одиночные здания в застроенных районах или бронетанковая техника могут быть уничтожены боеприпасами с лазерным наведением. Первым артиллерийским снарядом, в котором был использован этот физический принцип, стал разработанный американцами 155-мм COPPERHEAD. Однако, этот тип артиллерийского боеприпаса не получил развития на Западе. Россия использовала эту технологию с начала 80-х годов и разработала артиллерийские и минометные боеприпасы разных калибров с лазерным наведением. Сюда относятся снаряды Китолов и Сантиметр для 122-мм и 152-мм ствольной артиллерии, снаряды 120-мм Гран и 240-мм Смельчак для минометов. На Украине ЦКБ «Точность» создало 152-мм снаряд Квитник. Впрочем, российский Краснополь является самым известным артиллерийским снарядом, соответствующим национальным потребностям в 152-мм снаряде и изготавливаемым для экспорта с калибром стандарта НАТО 155 мм. Вдобавок к российским моделям, изготавливаемым ФГУП НИИ «Полюс», в качестве лазерных целеуказателей могут использоваться западные системы, например DHY307, разработанная французской компанией CILAS. В числе покупателей находятся, например, Индия и Франция. В Китае производится копия российского решения под обозначением HONG DU TI.
|
Системы Краснополь предназначены для поражения танков, БМП, артиллерийских орудий, в движении или неподвижных, на открытых пространствах или окопанных, а также землянок, мостов, паромных переправ и надводных целей. Система состоит из управляемого артиллерийского снаряда и лазерного целеуказателя.
Порядок выполнения огневой задачи с использованием системы Краснополь
Передовой наблюдатель обнаруживает цель и определяет ее координаты. Вместе с частотой лазерного целеуказателя в компьютер управления огнем по радиоканалу передаются эти координаты. На позиции для стрельбы электроника артиллерийской системы получает необходимые данные. Далее орудие заряжается и производится выстрел. Пока снаряд летит по своей траектории к цели, передовой наблюдатель получает запрос на маркировку цели. Датчик обнаружения снаряда активируется, получает отраженный от цели луч лазера и направляет снаряд на маркированную цель.
Такое решение обеспечивает вероятность попадания 90% на дальности стрельбы до 24 км. Даже движущиеся цели, скорость которых составляет до 36 км/ч, могут быть успешно поражены. По статистике, десять снарядов Краснополь необходимы для уничтожения оборудованного и укрепленного расположения взвода в составе двух танков, четырех БМП, трех пусковых установок ПТУР и пяти подземных блиндажей, связанных окопами. А для успешного уничтожения этого же объекта обычными фугасными боеприпасами может потребоваться несколько сотен выстрелов.
Несмотря на новые возможности по уничтожению точечных целей, этот тип боеприпаса имеет ряд недостатков. Электроника, сенсорные системы, а также механические компоненты современного управляемого лазером боеприпаса во время отстрела могут выдерживать высокие перегрузки в ограниченной степени. Таким образом, этот тип боеприпаса в настоящее время не может полностью использовать максимально достижимые по другим параметрам дальности. Дополнительным недостатком является необходимость в передовом наблюдателе, который может быть легко обнаружен современными разведывательными средствами (не только из-за активного лазера) и, в конечном счете, уничтожен. Кроме того, боеприпасу необходима определенная дистанция и время для захвата отраженного лазерного луча и изменения полетной траектории до цели. Плохие погодные условия, как например туман или низкая облачность, ограничивают применение снарядов управляемых лазером. Вдобавок, не исключено глушение датчиков обнаружения в головке самонаведения.
Впрочем, ожидается, что перспективные разработки в области электроники «смягчат» эти недостатки. С одной стороны, БПЛА, оснащенные лазерным целеуказателем, в будущем могли бы взять на себя функции передового наблюдателя. Кроме того, вполне реально дальнейшее развитие автоматизации процессов поиска, маркировки и уничтожения цели. Благодаря использованию лучей модулированного лазера, будущие боеприпасы будут более устойчивы к глушению. Также, электронные компоненты будут проектироваться таким образом, чтобы можно было достичь больших дальностей.
В частности, западные страны разрабатывают артиллерийские снаряды с установленными системами спутниковой навигации. Россия и Китай также наращивают темпы разработок в соответствующих областях и используют схожие технологии.
|
Боеприпасы, управляемые с помощью GPS
Точность спутниковой навигации зависит от числа и качества сигнала доступных спутников. Современные системы GPS полагаются исключительно на американские спутники. Четким признаком будущего значения этого типа боеприпасов является решение нескольких европейских стран уйти от американской GPS и создать свою собственную спутниковую систему с целью создания гарантии независимости от США. Россия и Китай также постоянно работают над внедрением автономных систем спутниковой навигации. Для упрощения терминологии в статье будет использоваться термин GPS.
Хорошо известным представителем этого типа боеприпасов является 155-мм снаряд EXCALIBUR от Raytheon. EXCALIBUR успешно применялся американскими войсками в Ираке. Его точность, с одной стороны, позволяет войскам поражать точечные цели в густо населенных районах, а с другой стороны также обеспечивает огневую поддержку, которая может быть приближена к своим подразделениям. EXCALIBUR – семейство снарядов следующего поколения для американской армии и корпуса морской пехоты США, успешно поступившее на вооружение в 2007 году. Компания Raytheon недавно получила контракт от американской армии стоимостью $23 миллиона по следующему этапу EXCALIBUR Ib, 155-мм высокоточному управляемому снаряду следующего поколения. Поставки снарядов EXCALIBUR Ib запланированы на 2012 год. Конструкция EXCALIBUR Ib базируется на проверенной модели EXCALIBUR Ia, но в нем меньше деталей и его производство упрощено. Эти изменения уменьшили стоимость боеприпаса и повысили его надежность.
Как и раньше, первая функциональная часть работы кправляемого по GPS боеприпаса – это обнаружение целей. Для этого могут быть использованы все обычные и проверенные разведывательные средства артиллерии, включая передовых наблюдателей, РЛС обнаружения целей или воздушные и спутниковые разведывательные средства. Как только определяются координаты цели, они передаются современным системам управления боем. Эти системы обеспечивают планирование задачи и решают, будет ли обстреливаться обнаруженная цель и каким образом. При отдаче приказа об обстреле цели будет проверено, находятся ли огневые расчеты в подходящей позиции для стрельбы или они еще должны занять эти позиции. Тем временем, компоненты управления огнем выбранных огневых расчетов вычисляют желаемую траекторию полета и обеспечивают орудия данными для стрельбы. Современная пушка будет автоматически нацелена в соответствии с заранее определенными параметрами: горизонтальный и вертикальный углы наведения, тип снаряда и метательного заряда, необходимые для достижения соответствующего результата. Уже до или во время заряжания, или, в крайнем случае, при отстреле снаряда, подается энергопитание на электронику и передаются данные о цели. Производится выстрел, снаряд покидает ствол и летит к цели по своей баллистической траектории. В определенный момент авионика снаряда принимает на себя управление. Основываясь на спутниковых данных, электроника постоянно определяет положение снаряда и сравнивает его с полученными характеристиками цели. Отклонения будут откорректированы посредством сигналов управления, передающихся на механизмы управления. Во время конечной фазы захода на цель корректировочные действия выполняются за все более короткие интервалы времени, а количество входящих сигналов управления рулями увеличивается. Этот алгоритм в настоящее время обеспечивает наивысший уровень точности.
Необходимая электроника и механика встраиваются в корпус снаряда, как это сделано в случае с боеприпасом EXCALIBUR. Однако это является относительно дорогим решением. Более предпочтительное решение демонстрирует нам современная тенденция, которая позволяет использовать существующие боеприпасы. Для того, чтобы получить это, необходима электроника, встраиваемая во взрыватель для расчета местоположения и отклонения снаряда. Примером такого подхода можно считать комплект точного наведения PGK (Precision Guidance Kit) для 155-мм боеприпасов, производимый компанией Alliant Techsystems (ATK).
|
Также, на парижской выставке EUROSATORY 2010 израильская компания Israel Aerospace Industries (IAI) представила свое решение TOPGUN. Это взрыватель с функциями навигации и наведения, который можно устанавливать во все обычные 155-мм снаряды. Как сообщается, снаряды с системой TOPGUN имеют максимальное круговое вероятное отклонение (УВО) всего 20 метров на дальности 40 км. Компания ATK также предлагает PGK в качестве опции для 120-мм минометных снарядов. Кроме того, компания Israel Military Industries (IMI) поставляет GM81 – это 81-мм управляемый по GPS минометный снаряд для легких сил с КВО менее 10 метров.
Несколько другой подход был выбран EXPAL. Эта испанская компания производит GMG-120, в котором между взрывателем и корпусом снаряда установлены компоненты, необходимые для управления этим снарядом.
Очень интересный тип современных, высокоточных минометных боеприпасов – это израильский 120-мм управляемый минометный снаряд, также известный как PURE HEART, результат сотрудничества компаний IMI и Raytheon. Боеприпасы оснащаются наведением по GPS, а также технологией лазерного наведения. IMI занимается GPS наведением, а Raytheon предоставляет компоненты лазерного наведения. Заявленная действительная дальность снаряда составляет 13 км. Сообщается, что при работе снаряда в режиме только наведения по GPS, максимальное КВО составляет менее 10 метров. При добавлении лазерного наведения точность может быть увеличена и КВО составит менее 1,5 метров.
Подводя итог, можно утверждать, что точность современных и перспективных артиллерийских снарядов может быть действительно повышена за счет систем лазерного наведения и GPS. Перспективные разработки постоянно будут улучшать эту технологию и сделают ее экономически более выгодной. Такие высокоточные боеприпасы позволят также артиллерии выполнять сложные задачи и остаться на современном асимметричном поле боя.
|
Воздействие на цель
Еще одним критерием качества при оценке артиллерийских боеприпасов является их воздействие на цель.
Будет продолжена разработка и внедрение новых осветительных и дымовых боеприпасов с активными веществами для соответствующего воздействия, они дополнят существующие боеприпасы. Более широко применяются осветительные ракеты с инфракрасной подсветкой в связи с тем, что пехотные подразделения оснащены недорогими штатными оптическими системами. Что касается дымовых боеприпасов, то в этой сфере ведется разработка веществ, непрозрачных для современных оптических систем (например, тепловизионных и инфракрасных).
В некоторых военных операциях для выполнения боевых задач необходимы серьезная огневая мощь и разрушительный потенциал. Когда артиллерия должна подсветить цель, то это нужно понимать почти буквально. Количество необходимых для этого боеприпасов относительно велико. Следовательно, при выполнении будущих артиллерийских задач все же будут необходимы обычные фугасные и осколочно-фугасные боеприпасы. В этой связи самым лучшим решением является TNT (тринитротолуол), который до сих пор используется в качестве заряда взрывчатого вещества. В перспективе применение таких фугасных снарядов будет более экономичным и уместным вследствие установки «модифицированных» взрывателей с наведением. Применение более новых взрывчатых веществ с более высоким энергетическим значением в этих «массовых боеприпасах» не ожидается по причине их высокой стоимости.
В других ситуациях, например в боевых операциях в застроенных районах, в которых могут присутствовать гражданские лица, выбор необходимых средств будет несколько более осторожным. Хотя сегодня цель может быть точно поражена благодаря повышенной точности, традиционные фугасные снаряды могут быть слишком разрушительными и стать причиной косвенных потерь. Именно поэтому подразделения производителей боеприпасов, занятые перспективным проектированием ищут альтернативные принципы воздействия. Разработки в области боеприпасов с топливно-воздушными взрывчатыми смесями (FAE, также называемые термобарическими снарядами) или плотным инертным металлическим взрывчатым веществом DIME (Dense Inert Metal Explosive) кажутся наиболее перспективными.
Заряд FAE в основном состоит из органического жидкого горючего вещества. Рассеиваемый и воспламеняющий заряд очень мелко распыляет горючее вещество над целью и воспламеняет его. Создаются чрезвычайно высокие температуры и давление. Когда такой принцип действия применяется совместно с тонкостенным корпусом снаряда, то крупных, но широко разбрасываемых осколков можно избежать и зона поражения при этом сокращается.
То же самое относится к DIME. Взрывчатое вещество в основном состоит из сверхмелкого металлического порошка, который не плавится во время детонации или вступает в реакцию с продуктами детонации. Для этого компонента используются тяжелые металлы с высокой температурой плавления. Металлические частицы нагреваются и во время взрыва получают высокое ускорение. Тем самым обеспечивается то, что эти микроосколки эффективны в непосредственной близости к эпицентру взрыва. Однако они быстро теряют скорость и действенность из-за своей небольшой массы. Следовательно, этот тип боеприпасов в пределах основного радиуса имеет соизмеримое с традиционными фугасными снарядами воздействие, но при этом значительно меньшее воздействие в пределах эффективного радиуса.
Кассетные боеприпасы
Подавляющая часть хранимых боеприпасов для ствольной артиллерии в настоящее время состоит из так называемых кассетных снарядов. Эти боеприпасы представляют собой стандартный корпус снаряда, доставляющий «полезный груз» к цели.
В дополнение к осветительным и дымовым боеприпасам кассетные снаряды, в частности, заряжаются субснарядами, известными как бомбы малого калибра или бомблеты. Кассетные боеприпасы выпускают большое количество поражающих элементов над целью. В основном, они применяются для обстрела площадных целей (например, аэродромы, районы сосредоточения сил и средств противника).
Над районом цели корпус снаряда разрушается и субснаряды (бомблеты) выпускаются и рассеиваются. При встрече бомблет с землей или целью они воздействуют на небронированные транспортные средства и личный состав осколками, также во многих случаях бронированные цели поражаются кумулятивными зарядами. Впрочем, детонация бомблет не всегда происходит как намечалось и, следовательно, оставляет поля боев усыпанными многочисленными неразорвавшимися боеприпасами на долгие годы. Это опасное наследство до сих пор является причиной смерти или ранения многих человек, живущих в районах бывших конфликтов. Для того, чтобы избежать таких потерь в будущем, многие страны по гуманитарным соображениям поддерживают конвенцию по кассетным боеприпасам, которая вступила в действие 1 августа 2010 года. Тем не менее, США, Россия, Китай, Пакистан, Индия и Израиль в настоящее время не хотят отказываться от этого очень эффективного вооружения и не подписывают эту Конвенцию. Впрочем, некоторые из этих стран планируют разработку более надежных субснарядов, и за счет этого уменьшение количества неразорвавшихся боеприпасов. Кроме того, Конвенци в общем не запрещает кассетные боеприпасы, и определенные типы кассетных боеприпасов до сих пор разрешены. Одним их таких разрешенных боеприпасов является SMART от Rheinmetall. В этом кассетном боеприпасе установлен взрыватель с сенсорной системой, которая ищет, обнаруживает, а также наводит на точечные цели. Кроме того, этот боеприпас имеет электронную функцию самоуничтожения, которая позволяет электронным способом деактивировать его в случае несрабатывания. Впрочем, этот тип кассетных боеприпасов не может быть эффективно применен против пехоты, так как его бомблеты предназначены исключительно для поражения бронированных целей.
В среднесрочной перспективе технологическая сфера кассетных боеприпасов значительно не изменится, так как им нет реальной альтернативы. Впрочем, в долгосрочной перспективе в этой специфической сфере будут разработаны новые механизмы воздействия.
Наконец, необходимо отметить тенденцию, по крайней мере, в западных странах, касающуюся малочувствительных боеприпасов. Первоначально разработка этого вида боеприпасов берет свое начало в военно-морских флотах разных государств. На борту боевых судов должно храниться большое количество боеприпасов для корабельной артиллерии. Во время морского боя снаряды часто взрывались, или же могло произойти прямое попадание в боевой арсенал, что вело к опустошающей детонации и потоплению судна. Что касается малочувствительных боеприпасов, то технические решения здесь снижают риск массовой детонации. Одним из таких технических решений является попытка стабилизировать взрывчатое вещество. К тому же, конструктивные и компоновочные решения направлены на повышение невосприимчивости боеприпасов к теплу, давлению и прямым попаданиям. Например, проверенное решение заключается в нанесении тонкого слоя жидкой смолы между корпусом снаряда и взрывчатым веществом.
Таким образом, можно сделать следующий вывод: потребности артиллерии увеличились, а традиционные боеприпасы не успевали за этими потребностями или соответствовали им только в ограниченной степени.
Такие показатели эффективности артиллерии, как дальность и воздействие на цель, были дополнены повышением точности. И на сегодняшний день новые типы боеприпасов уже начинают соответствовать требованиям будущего.
|
Источник: http://www.army-guide.com/ |